Skip to content

Q4

← Back

Basic Info

Probability
└── Homework
    └── W9
        └── Q4.tex

Preview

\documentclass[12pt]{article}

\usepackage{graphicx}
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage[margin=1in]{geometry}
\usepackage{fancyhdr}
\usepackage{enumerate}
\usepackage[shortlabels]{enumitem}

\pagestyle{fancy}
\fancyhead[l]{Li Yifeng}
\fancyhead[c]{Homework \#9}
\fancyhead[r]{\today}
\fancyfoot[c]{\thepage}
\renewcommand{\headrulewidth}{0.2pt}
\setlength{\headheight}{15pt}

\newcommand{\bE}{\mathbb{E}}
\newcommand{\bP}{\mathbb{P}}

\begin{document}

    \section*{Question 4}

    \noindent An urn contains four balls numbered from $1$ to $4$. If we add a new ball with the number $4$, does the entropy associated with the extraction of a ball from the urn increase or decrease? And would it have happened if the added ball had the number $5$?

    \bigskip

    \begin{enumerate}[label={},leftmargin=0in]\item
        \subsection*{Solution}

            Easy to know the initial situation is that

            \[
                H_1(I_1(X_1)) = -4 \cdot \frac{1}{4} \left(log_2\left(\frac{1}{4}\right)\right) = 2 \text{bits}
            \]

            By adding a ball with the number $4$, we then have

            \[
                H_2(I_2(X_2)) = - \left(
                    3 \cdot \frac{1}{5} \left(log_2\left(\frac{1}{5}\right)\right) + 2 \cdot \frac{1}{5}\left(log_2\left(\frac{2}{5}\right)\right)
                \right) \approx 1.92 \text{bits}
            \]

            And we have the situation when we add a ball with number $5$

            \[
                H_3(I_3(X_3)) = - 5 \cdot \frac{1}{5} \left(log_2\left(\frac{1}{5}\right)\right) \approx 2.32 \text{bits}
            \]

            Finally we have the conclusion

            \[
                H_2 < H_1 < H_3
            \]

        \subsection*{Answer}

        \[\boxed{H_2 < H_1 < H_3}\]
    \end{enumerate}

\end{document}