Skip to content

Q3

← Back

Basic Info

Probability
└── Homework
    └── W9
        └── Q3.tex

Preview

\documentclass[12pt]{article}

\usepackage{graphicx}
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage[margin=1in]{geometry}
\usepackage{fancyhdr}
\usepackage{enumerate}
\usepackage[shortlabels]{enumitem}

\pagestyle{fancy}
\fancyhead[l]{Li Yifeng}
\fancyhead[c]{Homework \#9}
\fancyhead[r]{\today}
\fancyfoot[c]{\thepage}
\renewcommand{\headrulewidth}{0.2pt}
\setlength{\headheight}{15pt}

\newcommand{\bE}{\mathbb{E}}
\newcommand{\bP}{\mathbb{P}}

\begin{document}

    \section*{Question 3}

    \noindent Suppose that $X$ is a random variable whose entropy $H(X)$ is $8$ bits. Suppose that $Y(X)$ is a deterministic function that takes on a different value for each value of $X$.

    \bigskip

    \begin{enumerate}[start=1,label={\bfseries Part \arabic*:},leftmargin=0in]
        \bigskip\item What is the entropy of $Y$?

        \subsection*{Solution}

            Since the values are unrelated to the info or the entropy, easy to see that

            \[H(X) = 8\text{bits} = H(Y)\]

        \subsection*{Answer}

        \[\boxed{H(Y) = 8 \text{bits}}\]

        \bigskip\item What is the joint entropy $H(X,Y)$?

        \subsection*{Solution}

            Similarly, since both entropies are the same, we have

            \[H(X, Y) = H(X) = H(Y) = 8 \text{bits}\]

        \subsection*{Answer}

        \[\boxed{H(X, Y) = 8 \text{bits}}\]
    \end{enumerate}

\end{document}