Skip to content

Q2

← Back

Basic Info

Probability
└── Homework
    └── W9
        └── Q2.tex

Preview

\documentclass[12pt]{article}

\usepackage{graphicx}
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage[margin=1in]{geometry}
\usepackage{fancyhdr}
\usepackage{enumerate}
\usepackage[shortlabels]{enumitem}

\pagestyle{fancy}
\fancyhead[l]{Li Yifeng}
\fancyhead[c]{Homework \#9}
\fancyhead[r]{\today}
\fancyfoot[c]{\thepage}
\renewcommand{\headrulewidth}{0.2pt}
\setlength{\headheight}{15pt}

\newcommand{\bE}{\mathbb{E}}
\newcommand{\bP}{\mathbb{P}}

\begin{document}

    \section*{Question 2}

    \noindent Suppose that women who live beyond the age of $80$ outnumber men in the same age group by three to one. How much information, in bits, is gained by learning that a person who lives beyond $80$ is male?

    \bigskip

    \begin{enumerate}[label={},leftmargin=0in]\item
        \subsection*{Solution}

            Let

            \[
                \begin{aligned}
                    \bP(W) &:= \text{probability of being a woman beyond the age of $80$}\\
                    \bP(M) &:= \text{probability of being a man beyond the age of $80$}
                \end{aligned}
            \]

            Then we have

            \[
                \begin{aligned}
                    \bP(W) &= \frac{3}{4}\\
                    \bP(M) &= \frac{1}{4}
                \end{aligned}
            \]

            So that

            \[
                I(X) = -log_2(\bP(M)) = 2 \text{bits}
            \]

        \subsection*{Answer}

        \[\boxed{I(X) = 2 \text{bits}}\]
    \end{enumerate}

\end{document}