Skip to content

Q3

← Back

Basic Info

Probability
└── Homework
    └── W8
        └── Q3.tex

Preview

\documentclass[12pt]{article}

\usepackage{graphicx}
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage[margin=1in]{geometry}
\usepackage{fancyhdr}
\usepackage{enumerate}
\usepackage[shortlabels]{enumitem}

\pagestyle{fancy}
\fancyhead[l]{Li Yifeng}
\fancyhead[c]{Homework \#8}
\fancyhead[r]{\today}
\fancyfoot[c]{\thepage}
\renewcommand{\headrulewidth}{0.2pt}
\setlength{\headheight}{15pt}

\newcommand{\bE}{\mathbb{E}}
\newcommand{\bP}{\mathbb{P}}

\begin{document}

    \section*{Question 3}

    \noindent In the NBA $3$-point contest the player shoots $20$ shots: $16$ normal balls ($1$ pt each), and $4$ money balls ($2$ pts each). Assume shot success probability is $0.43$.

    \bigskip

    \begin{enumerate}[start=1,label={\bfseries Part \arabic*:},leftmargin=0in]
        \bigskip\item What is the expected value of points scored?

        \subsection*{Solution}

            Let $X_1\sim\mathrm{Binomial}(16,0.43)$ be hits on normal balls and $X_2\sim\mathrm{Binomial}(4,0.43)$ hits on money balls. Total points $T = X_1 + 2X_2$, so

            \[
                \bE[T] = 16(0.43) + 2\cdot4(0.43) = 6.88 + 3.44 = 10.32
            \]

        \subsection*{Answer}

            \[\boxed{\bE[T] = 10.32}\]

        \bigskip\item What is the standard deviation of the total points scored?

        \subsection*{Solution}

            We have

            \[
                \begin{aligned}
                    \mathrm{Var}(X_1)&=16\cdot0.43\cdot0.57\\
                    \mathrm{Var}(X_2)&=4\cdot0.43\cdot0.57
                \end{aligned}
            \]

            and since $\mathrm{Var}(2X_2)=4\,\mathrm{Var}(X_2)$ and $X_1, X_2$ independent,

            \[
                \begin{aligned}
                    \mathrm{Var}(T)
                        &= 16\cdot0.43\cdot0.57 + 4\times(4\cdot0.43\cdot0.57)\\
                        &= 2\times16\cdot0.43\cdot0.57\\
                        &= 32\cdot0.43\cdot0.57\\
                        &\approx7.843
                \end{aligned}
            \]

            so

            \[
                \sigma_T = \sqrt{32\cdot0.43\cdot0.57} \approx 2.80
            \]

        \subsection*{Answer}

            \[\boxed{\sigma_T = \sqrt{32\cdot0.43\cdot0.57}\approx2.80}\]
    \end{enumerate}

\end{document}