Skip to content

Q1

← Back

Basic Info

Probability
└── Homework
    └── W10
        └── Q1.tex

Preview

\documentclass[12pt]{article}

\usepackage{graphicx}
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage[margin=1in]{geometry}
\usepackage{fancyhdr}
\usepackage{enumerate}
\usepackage[shortlabels]{enumitem}

\pagestyle{fancy}
\fancyhead[l]{Li Yifeng}
\fancyhead[c]{Homework \#10}
\fancyhead[r]{\today}
\fancyfoot[c]{\thepage}
\renewcommand{\headrulewidth}{0.2pt}
\setlength{\headheight}{15pt}

\newcommand{\bE}{\mathbb{E}}
\newcommand{\bP}{\mathbb{P}}

\begin{document}

    \section*{Question 1}

    \noindent 

    \bigskip

    \begin{enumerate}[start=1,label={\bfseries Part \arabic*:},leftmargin=0in]
        \bigskip\item 

        \subsection*{Solution}
        First compute the marginal distribution of $X$:
        \[
        P(X=0)=\frac18,\quad P(X=1)=\frac78.
        \]
        Then
        \[
        H(X)=-\sum_{x=0}^1 P(X=x)\log_2P(X=x)
        =-\Bigl(\tfrac18\log_2\tfrac18+\tfrac78\log_2\tfrac78\Bigr)
        \approx0.544\text{ bits}.
        \]

        Next compute the conditional entropy:
        \[
        H(X\mid Y)
        =\sum_{y=0}^1P(Y=y)\,H(X\mid Y=y).
        \]
        For $Y=0$, $P(Y=0)=\tfrac18$ and $X$ is degenerate ($H=0$).\\
        For $Y=1$, $P(Y=1)=\tfrac78$ and
        \[
        P(X=0\mid1)=\frac{1/8}{7/8}=\frac17,\quad
        P(X=1\mid1)=\frac67,
        \]
        so
        \[
        H(X\mid Y=1)
        =-\Bigl(\tfrac17\log_2\tfrac17+\tfrac67\log_2\tfrac67\Bigr)
        \approx0.592\text{ bits}.
        \]
        Hence
        \[
        H(X\mid Y)
        =\frac18\cdot0+\frac78\cdot0.592
        \approx0.519\text{ bits}.
        \]
        Finally, compare:
        \[
        H(X)\approx0.544\;\ge\;0.519\approx H(X\mid Y).
        \]

        \subsection*{Answer}
        \[
        \boxed{
            H(X)\approx0.544\text{ bits},\quad
            H(X\mid Y)\approx0.519\text{ bits},\quad
            H(X)\ge H(X\mid Y).}
        \]

        \bigskip\item 

        \subsection*{Solution}
        We compare $H(X\mid Y=1)\approx0.592$ bits (from above) with the a‐priori $H(X)\approx0.544$ bits. 

        \subsection*{Answer}
        \[
        \boxed{
            H(X\mid Y=1)\approx0.592\text{ bits}
            \;>\;
            H(X)\approx0.544\text{ bits}.
        }
        \]

        \bigskip\item 

        \subsection*{Solution}
        The mutual information is
        \[
        I(X;Y)=H(X)-H(X\mid Y)
        \approx0.544-0.519=0.025\text{ bits}.
        \]

        \subsection*{Answer}
        \[
        \boxed{I(X;Y)\approx0.025\text{ bits}.}
        \]
    \end{enumerate}

\end{document}